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SUMMARY

A discrete Newton approach is applied to implicit flux-limiting schemes based on the concept of algebraic
flux correction. The Jacobian matrix is approximated by divided differences and assembled edge by edge.
The use of a nodal flux limiter leads to an extended stencil which can be constructed a priori. Numerical
examples for 2D benchmark problems are presented to compare the performance of the algebraic Newton
method with the defect correction approach. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Modern high-resolution schemes combine discretizations of high and low order in a nonlinear
fashion so as to recover the high accuracy in regions of smooth solutions without generating
nonphysical oscillations in the vicinity of discontinuities. In this paper, we adopt an algebraic
approach to the design of flux correction schemes, which consists of imposing mathematical
constraints on discrete operators so as to achieve certain matrix properties. All conservative matrix
manipulations are performed on the discrete level so that the application of Newton’s method is a
nontrivial task. We present an algebraic approach to the construction of the Jacobian matrix which
makes use of an edge-based representation of the artificial nonlinearity.
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2. ALGEBRAIC FLUX CORRECTION

Let the time-dependent conservation law �u/�t+∇ ·f(u)=0 for a scalar quantity u be discretized
by the Galerkin finite element method (FEM) which yields a DAE system for the vector of nodal
values

MC
du

dt
=Ku (1)

where MC ={mi j } is the consistent mass matrix and K ={ki j } denotes the discrete transport
operator. It is well known that the standard Galerkin method requires some stabilization in order
to prevent the formation of spurious oscillations in the vicinity of steep gradients. In this paper we
adopt an algebraic approach to render K local extremum diminishing (LED) by adding an artificial
diffusion operator D={di j }. It is designed to eliminate all negative off-diagonal entries from the
convective operator K which would lead to nonphysical undershoots and overshoots otherwise.
For (bi-)linear finite elements the optimal choice reads [1]

di j =max{−ki j ,0,−k ji }=d ji (2)

so that the off-diagonal coefficients of the low-order operator li j :=ki j +di j are nonnegative.
Without loss of generality, we orient the edges of the sparsity graph so that l j i�li j for the edge i j
which implies that node i is located ‘upwind’ and corresponds to the row number of the eliminated
negative entry. Owing to the fact that D is a discrete diffusion operator, which is defined as a
symmetric matrix with zero row and column sums, the diagonal entry of the monotone low-order
operator is given by li i =kii −∑

j �=i di j . In addition, row-sum mass lumping is performed so as to
remove the antidiffusion from the consistent mass matrix which may violate the LED property so
that the semi-discrete low-order scheme reads

ML
du

dt
= Lu, L=K +D (3)

According to the Godunov theorem, linear monotonicity preserving schemes can be at most first-
order accurate. This order barrier can be overcome by blending the discretizations of high and
low order in an adaptive fashion. The difference between the high- and low-order residual terms
f =(ML −MC )du/dt+(K −L)u can be decomposed into sums of skew-symmetric internodal
fluxes which are associated with the edges of the underlying sparsity graph

fi = ∑
j �=i

fi j , fi j =
[
mi j

d

dt
+di j

]
(ui −u j )=− f j i (4)

Their limited counterparts are applied to the right-hand side of the monotone low-order discretiza-
tion (3) so as to obtain the following nonlinear high-resolution scheme:

ML
du

dt
= Lu+ f ∗(u), f ∗

i = ∑
j �=i

�i j fi j , �i j ∈[0,1] (5)

Setting all correction factors equal to zero, one obtains the low-order discretization (3) while
the Galerkin scheme (1) is recovered if no limiting is performed. The task of the flux
limiter is to find correction factors �i j as close to 1 as possible without generating spurious
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oscillations. In the framework of algebraic flux correction [1, 2] the following algorithm is
adopted:

1. Compute the sums of positive and negative antidiffusive fluxes

P+
i = ∑

j �=i
max{0, fi j }, P−

i = ∑
j �=i

min{0, fi j } (6)

2. Define the upper/lower bounds for a set of coefficients qi j�0

Q+
i = ∑

j �=i
qi j max{0,u j −ui }, Q−

i = ∑
j �=i

qi j min{0,u j −ui } (7)

3. Evaluate the correction factor for positive/negative fluxes

R±
i =min

{
1,

Q±
i

P±
i

}
, �i j =

{
min{R+

i , R−
j } if fi j�0

min{R−
i , R+

j } if fi j <0
(8)

For symmetric limiters of FCT type, qi j =mi j/�t in the definition of upper and lower bounds
while the correction factors �i j are determined as the minimum of R±

i and R∓
j . For the computation

of steady-state flows, the use of an upwind-biased limiting strategy is advisable. In this case, qi j =
di j and the sums in (6) only extend over the set of downwind neighbors Ji ={ j �= i |0= li j < l j i }.
Moreover, the nodal correction factor of the upwind node is employed in the limiting procedure,
that is, �i j = R±

i depending on the sign of the flux.
To simplify the presentation, the contribution of the mass matrix is neglected in what follows

so that the raw flux given in (4) is redefined as fi j =di j (ui −u j )=− f j i .

3. NONLINEAR SOLUTION STRATEGIES

After an implicit time discretization, we end up with a nonlinear algebraic system of the form

F(un+1) :=ML
un+1−un

�t
−�N (un+1)−(1−�)N (un)=0, 0<��1 (9)

The operator N (u)= Lu+ f ∗(u) is made up from the monotone transport operator, which is
nonlinear only if the governing equation features this property, and the antidiffusive correction
f ∗(u). The solution at time tn+1= tn+�t can be computed by the fixed-point iteration

u(m+1) =u(m)−C−1F(u(m)), u(0) =un, m=0,1, . . . (10)

where C is a suitable ‘preconditioner’ to be defined below. The iteration process is terminated for
sufficiently small solution increments and/or for a required reduction of the nonlinear residual. In
a practical implementation, the ‘inversion’ of C is also performed by solving a sequence of linear
subproblems for the solution increment which is applied to the last iterate

C�u(m+1) = F(u(m)), m=0,1, . . .

u(m+1) = u(m)+�u(m+1), u(0) =un
(11)
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For very small time steps, the lumped mass matrix yields a usable preconditioner C=ML/�t
which can be inverted directly. If larger time steps should be employed the low-order operator

C=ML/�t−�L (12)

can be used to turn Equation (10) into a fixed-point defect correction scheme. By construction,
the preconditioner defined in (12) is an M-matrix and hence exhibits amenable matrix properties
[1]. The linear problem (11) is solved by a Krylov subspace method which can be preconditioned
by an incomplete LU factorization (ILU) of the operator C . It is worth mentioning that for an
M-matrix the ILU decomposition unconditionally exists and is unique.
Another attractive algorithm for the solution of the nonlinear algebraic system (9) is Newton’s

method which is recovered from (10) by defining the global preconditioner as follows:

C=ML/�t−�T, T = �N (u)

�u
(13)

In each step, the Jacobian matrix T ={ti j }, which corresponds to the nonlinear operator N (u),
needs to be evaluated making use of the solution u(m) from the last iteration.

4. APPROXIMATION OF JACOBIAN MATRIX

Recall that the operator N (u) is constructed from the high-order transport operator K by adding
artificial diffusion D and applying some portion of admissible antidiffusion afterwards. All conser-
vative manipulations are performed on the algebraic level so that no continuous counterpart exists.
Consequently, the Jacobian matrix can be approximated only by divided differences. To this end,
let us introduce the operator Dk for a generic function g(u)

Dk[g] := g(u+hek)−g(u−hek)

2h
(14)

where ek denotes the kth unit vector. The perturbation parameter h should be sufficiently small to
obtain a good approximation to the derivative, e.g. h=√

�mach. If the accuracy of the function g
is known to be limited, h=((1+‖u‖)�mach)

1/3 is a reasonable choice, whereby �mach denotes the
machine precision.

By virtue of definition (14) each entry of the Jacobian T can be approximated as follows:

tik =Dk[N (u)i ]+O(h2) (15)

Let us substitute the definition N (u)=Ku+Du+ f ∗(u) in the above relation and decompose the
net diffusive contribution (Du)i + f ∗

i to each node into sums of internodal fluxes [3]
Dk[N (u)i ]= k̂ik+∑

j
Dk[ki j ]u j + ∑

j �=i
Dk[(1−�i j )di j (u j −ui )] (16)

Here, the average of the high-order coefficient results from the two-sided perturbation of u

K̂ ={k̂i j }, k̂i j = ki j (u+hek)+ki j (u−hek)

2
(17)

If the velocity field does not depend on the solution, then the averaged transport operator K̂ reduces
to K whereas its derivative vanishes. Nonetheless, the approximate Jacobian of the (anti-)diffusive
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k

Figure 1. Stencil of the Jacobian matrix for column k.

term Du+ f ∗(u) needs to be evaluated since it contains some artificial nonlinearity engendered
by the use of a solution-dependent flux correction algorithm.

Without going into detail let us investigate the sparsity pattern of the resulting Jacobian matrix.
To this end, let G=〈K 〉 denote the connectivity graph of the standard finite element matrix and
Z=〈T 〉 represent that of the Jacobian for the nonlinear operator N (u). It is easy to verify that
gii �=0, ∀i and gi j �=0,∀i, ∀ j �= i if and only if there exists an edge i j . Obviously, the same
structure carries over to the matrix T . In addition, the correction factors �i j defined in (8) give
rise to an extended coupling of nodes which are not directly connected by an edge. The situation
is illustrated in Figure 1 where a small perturbation is applied to node k. Consequently, the nodal
quantities P±

i , Q±
i and R±

i need to be updated for k and for all of its direct neighbors i for
which there exists an edge ik. Since the correction factors �i j are defined as a combination of R±

i
and R±

i , the perturbation of the nodal solution value uk may lead to a nonvanishing contribution
Dk[(1−�i j )di j (u j −ui )] to node i and also to j but with opposite sign. In other words, the
connectivity graph of T needs to be extended such that g jk �=0, ∀ j, ∀k �= j if there exist two
edges i j and ik which allow for an indirect interaction of nodes j and k via their common node
neighbor i . The above derivation of the extended connectivity graph can be readily turned into
an algorithm for generating Z=G2 by means of a matrix–matrix multiplication and filtering the
nonzero entries. Interestingly enough, the use of an edge-oriented FEM stabilization techniques
yields a similar sparsity pattern of the system matrix so that construction procedures can be reused.

5. NUMERICAL EXAMPLES

As a first test problem, consider the 2D convection–diffusion equation v ·∇u−d�u=0 to be solved
in the domain �=(0,1)×(0,1), whereby the velocity field v=(cos10◦,sin10◦) is constant and
d=10−3. The concomitant boundary conditions read

u(x,0)=0,

u(1, y)=0,

�u
�y

(x,1)=0, u(0, y)=
{
1 if y�0.5

0 otherwise
(18)
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Figure 2. Convection–diffusion in 2D: (a) FEM-TVD: 128×128 Q1-elements
and (b) nonlinear convergence.

which lead to a sharp front next to the line x=1. A common practice in the computation of
steady-state problems is to adopt the fully implicit backward Euler method (�=1) and perform
pseudo-time stepping. This strategy can be interpreted as applying an individual under-relaxation
factor to each nodal equation. The nonlinear algebraic equation (9) is solved repeatedly until
‖F(u)‖�10−12, whereby only one nonlinear iteration is performed per pseudo-time step. The
numerical solution depicted in Figure 2(a) is computed by the FEM-TVD method on a uniform
mesh of 128×128 bilinear elements. The resolution of the thin boundary layer is very crisp and
moreover the profile is free of spurious oscillations.

The nonlinear convergence behavior of the algebraic Newton approach (13) and the standard
defect correction scheme (12) is presented in Figure 2(b) for three successively refined meshes
making use of a moderate pseudo-time step �t=1.0. Interestingly enough, the convergence of
the defect correction scheme improves if the mesh is refined. This may be attributed to the fact
that the nonlinearity is artificially introduced by the flux limiter so that the system becomes ‘less
nonlinear’ if the mesh is refined and the perturbation by artificial (anti-)diffusion becomes smaller.
Nonetheless, the algebraic Newton method outperforms the defect correction scheme by a factor
of 4–16 with respect to the number of nonlinear iterations.

As a second example consider the 1D inviscid Burgers’ equation u�u/�x+�u/�t=0 solved
in the space–time domain �=(0,1)×(0,0.5). This corresponds to computing the solution for all
time levels simultaneously instead of doing it step by step. The staircase profile

u(x, t)=

⎧⎪⎨
⎪⎩
1 if 0�x<0.4∧ t=0

0.5 if 0.4�x�0.8∧ t=0

0 if 0.8< x�1∧ t=0 ∨ x=0∧0�t�0.5

(19)

is prescribed at the ‘inlet’ of � which leads to a rarefaction wave and two shock waves. All flow
features are captured accurately by the FEM-TVD method as depicted in Figure 3(a).

For this simulation, the pseudo-time step is chosen adaptively from the interval [0.01,1.0] by
means of a PID controller. Moreover, a maximum number of 10 nonlinear iterations is allowed
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Figure 3. Burgers’ equation in space–time: (a) FEM-TVD: 32 768 P1-elements
and (b) nonlinear convergence.

in each time step. The nonlinear convergence behavior of the defect correction scheme and the
algebraic Newton approach is presented in Figure 3(b). Newton’s method requires a constant
number of 38–39 outer iterations, whereas more than 1000 cycles are necessary for the defect
correction approach in order to converge on the finest grid. Throughout all the computations, the
CPU time required by the defect correction approach exceeds that of Newton’s method by a factor
of 3. For both test problems, the linear systems are solved by means of a BiCGSTAB method
making use of an ILU(0) decomposition of the low-order operator (12).
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